FUNKAMATEUR - Bauelementeinformation

Lineare Stromsensoren auf Hall-Effekt-Basis

ACHS-7121 ACHS-7122 ACHS-7123

Grenzwerte

Parameter	Kurzzeichen	min.	max.	Einheit
Betriebsspannung	U_{B}	-0,5	8	V
Ausgangsspannung	$U_{ m A}$	-0,5	$U_{\rm B} + 0.5$	V
Ausgangsstrom	$I_{ m A}$	-10	10	mA
Überstromtransiententoleranz				
bei einem Impuls mit 100 m	is $I_{ m ET}$		100	A
Sperrschichttemperatur	$artheta_{ m J}$		150	°C
Eingangsverlustleistung	$P_{ m E}$		900	mW
Ausgangsverlustleistung	$P_{ m A}$		90	mW
Betriebstemperatur	$artheta_{ m B}$	-40	110	°C

Kennwerte $(C_F = 1 \text{ nF}, U_B = 5.0 \text{ V}, \vartheta_B = 25 \text{ °C})$

Parameter	Kurzzeiche	n min.	typ.	max.	Einheit
Betriebsspannung	U_{B}	4,5	5,0	5,5	V
Betriebsstrom	$I_{ m B}$		13	15	mA
Eingangswiderstand	$R_{ m E}$		0,7		$m\Omega$
Anstiegszeit	$t_{\rm A}$		4		μs
Bandbreite	B		80		kHz
Ausgangsspannung ¹⁾	$U_{ m A0}$		$0,5 \cdot U_{\mathrm{B}}$		V
Ausgangslast, kapazitiv	$C_{ m L}$			10	nF
Ausgangslast, resistiv	$R_{ m L}$	4,7			$k\Omega$
interner Filterwiderstand	$R_{ m Fi}$		1,6		$k\Omega$
Isolationsspannung ²⁾	$U_{ m Iso}$		3		kV
thermischer Widerstand	$R_{ m JA}$		27		K/W
ACHS-7121					
Eingangsstrom	$I_{ m E}$	-10		10	A
Empfindlichkeit	$U_{ m A}$		185		mV/A
Empfindlichkeitsfehler	$\Delta U_{ m A}$	-3		3	%
Nichtlinearität	$\Delta U_{ m A}$		0,27		%
Rauschen bei $B = 2 \text{ kHz}$	$U_{ m AR}$		7,8		mV
Steilheitsfehler ^{1) 3)}	$\Delta U_{ m A0}$		-0,03		mV/K
Ausgangsspannungs-Offset ¹⁾	$\Delta U_{ m A0Off}$	-30		30	mV
ACHS-7122					
Eingangsstrom	$I_{ m E}$	-20		20	A
Empfindlichkeit	$U_{ m A}$		100		mV/A
Empfindlichkeitsfehler	$\Delta U_{ m A}$	-3		3	%
Nichtlinearität	$\Delta U_{ m A}$		0,18		%
Rauschen bei $B = 2 \text{ kHz}$	$U_{ m AR}$		4,1		mV
Steilheitsfehler ^{1) 3)}	$\Delta U_{ m A0}$		-0,01		mV/K
Ausgangsspannungs-Offset ¹⁾	$\Delta U_{ m A0Off}$	-25		25	mV
ACHS-7123					
Eingangsstrom	$I_{ m E}$	-30		30	A
Empfindlichkeit	U_{A}		66		mV/A
Empfindlichkeitsfehler	$\Delta U_{ m A}$	-3		3	%
Nichtlinearität	$\Delta U_{ m A}$		0,11		%
Rauschen bei $B = 2 \text{ kHz}$	U_{AR}		2,7		mV
Steilheitsfehler ^{1) 3)}	$\Delta U_{ m A0}$		-0,01		mV/K
Ausgangsspannungs-Offset ¹⁾	$\Delta U_{ m A0Off}$	-20		20	mV

¹⁾ bei $I_{\rm E} = 0 \, {\rm A}$

Kurzcharakteristik

- Ausgangsspannung proportional zu Gleich- und Wechselströmen
- Ausgangsempfindlichkeit 66 mV/A bis 185 mV/A
- geringes Rauschen
- Frequenzbereich 0 Hz bis 80 kHz, Obergrenze einstellbar via Filteranschluss
- interner Leiterwiderstand 0,7 mΩ
- Betriebsspannung 5 V
- im SO-8-Gehäuse (SMD) verfügbar

Beschreibung

Die ICs ACHS-7121 bis ACHS-7123 sind präzise Stromsensoren für die potenzialfreie Messung von Gleich- und Wechselströmen. Die Schaltkreise enthalten eine auf dem nach dem US-amerikanischen Physiker Edwin Hall (phonetisch: 'hɔ:l) benannten Hall-Effekt basierende Schaltung. Der durch einen Kupferleiter fließende Strom generiert ein magnetisches Feld, das die Hall-Umsetzer in eine proportionale Ausgangsspannung mit geringem Offset umsetzen. Die Genauigkeit der ICs wird durch den geringen Abstand zwischen Kupferleiter und Hall-Umsetzer erreicht.

Hersteller

Broadcom Inc., www.broadcom.com

Bezugsquelle

Digi-Key Electronics, www.digikey.de Mouser Electronics, www.mouser.de

Anschlussbelegung

Pin 1, 2: positive Eingänge des Strommonitors (IP+), beide beschalten Pin 3, 4: negative Eingänge des Strommonitors (IP-), beide beschalten Pin 5: Masse für Pins 6 bis 8 (GND) Pin 6: Kondensator für Bandbreiten

festlegung (FI) Pin 7: Ausgangssignal (VOUT) Pin 8: Betriebsspannung (VCC)

Bild 1: Pinbelegung (SO-8)

²⁾ bei 4 mm Kriechstrecke zwischen Pins 1 bis 4 und Pins 5 bis 8

³⁾ bei $\vartheta_{\rm B} = -40 \dots +25 \,{}^{\circ}{\rm C}$

Blockschaltbild

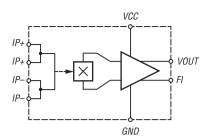


Bild 2: Blockschaltbild des ACHS-7121 bis ACHS-7123

Layout

Zwischen den Pins 5 und 8 ist möglichst nah der Bypass-Kondensator C_{Byp} anzuschließen.

Um eine maximale Transienten-Immunität im Gleichtakt-Modus zu erhalten, sind Streukopplungen durch einen maximal möglichen Abstand zwischen den Pins 1 bis 4 der Ein- und den Pins 5 bis 8 der Ausgangsseite des IC einzuhalten. Außerdem ist sicherzustellen, dass alle Masse oder Strom führenden Leitungen nicht unter dem Gehäuse hindurchführen oder unter dieses ragen.

Die Verwendung von Leiterflächen für die Masse und die Messeingänge ist angeraten. Die Führung der Leiterzüge zu den Eingangspins 1 bis 4 der Schaltkreise hat Einfluss auf die Empfindlichkeit. Es wird empfohlen, dass die Leiterzüge die jeweiligen Pins gemeinsam voll umschließen, wie in Bild 3 dargestellt. Dann erreicht die Empfindlichkeit den jeweils spezifizierten Wert.

Wenn die Verbindungen zu den Eingangspins nur den Querteil der Anschlüsse umfassen, wie in Bild 4 dargestellt, ergibt sich eine Verschiebung der Empfindlichkeit gegenüber der empfohlenen Ausführung um $-0.6\,\%$.

Wenn die Verbindungen zu den Eingangspins nur den Längsteil der Anschlüsse umfassen, wie in Bild 5 dargestellt, ergibt sich eine Verschiebung der Empfindlichkeit gegenüber der empfohlenen Ausführung um +1,2 %.

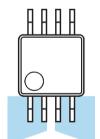


Bild 3: Empfohlene Leiterführung

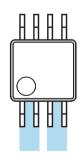


Bild 4: Vertikale Leiterführung

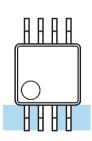


Bild 5: Horizontale Leiterführung

Wichtige Diagramme

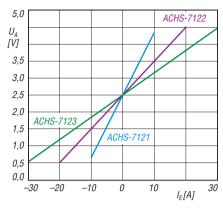


Bild 7: Ausgangsspannung $U_{\rm A}$ in Abhängigkeit vom Eingangsstrom $I_{\rm E}$ der drei ICs

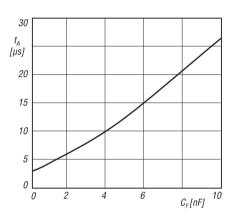


Bild 8: Anstiegszeit t_A in Abhängigkeit von der Kapazität des Kondensators C_F bei maximalem Eingangsstrom I_E

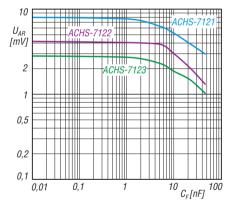


Bild 9: Rauschen U_{AR} am Ausgang der drei ICs in Abhängigkeit von der Kapazität des Kondensators C_F

Applikationsschaltung

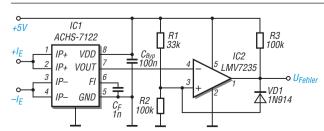


Bild 6: Überstrom-Fehlermeldung mit dem ACHS-7122; das Verhältnis von R1 und R2 legt die Fehlerschwelle auf 10 A fest. Das Fehlersignal wird bis zur Unterbrechung der Betriebsspannung ausgegeben, auch wenn die Stromstärke zwischenzeitlich schon unter 10 A gesunken sein sollte.