FUNKAMATEUR - Bauelementeinformation

Quadraturmodulator mit VCO und PLL-Synthesizer

ADRF6701 bis ADRF6704

Grenzwerte

Parameter	Kurzzeichen	min.	max.	Einheit
Betriebsspannung	$U_{ m B}$		5,5	V
Eingangsspannungen, digital	$U_{ m ED}$	-0,3	3,6	V
Leistung des Lokaloszillators	$P_{ m OSC}$		18	dBm
Basisbandeingangsspannung	$U_{ m EB}$	-0,5	1,5	V
Referenzfrequenz-				
eingangsspannung	$U_{ m ER}$	-0,3	3,6	V
Sperrschichttemperatur	$artheta_{ m IA}$		150	°C
Betriebstemperatur	$\vartheta_{ m B}$	-40	85	°C

Kurzcharakteristik

- Betriebsspannung 5 V
- Ausgangsfrequenzbereiche:
 400...1250 MHz (ADRF6701) bis
 2050...3000 MHz (ADRF6704)
- LO-Frequenzbereiche:
 750...1150 MHz (ADRF6701) bis
 2500...2900 GHz (ADRF6704)
- Basisbandbreite 750 MHz
- im LFCSP-40-Gehäuse verfügbar

Anschlussbelegung

Pin 1, 10, 17, 22, 27, 29, 34: Betriebsspannung (VCC1 ... VCC7) Pin 2, 9, 40: Stützkondensatoren für internen 3,3-V-, 2,5-V- und VCO-Spannungsregler (DECL1, DECL2, DECL3) Pin 3: Ladungspumpenausgang (CP) Pin 4, 7, 11, 15, 20, 21, 23, 25, 28, 30, 31, 35: Masse (GND)

Pin 24: nicht beschalten (NC)

Pin 5: Maximalstromeinstellung für

Ladungspumpe (RSET)
Pin 6: Referenzfrequenzeingang

(REFIN)
Pin 8: Multiplexerausgang (MUXOUT)

Pin 12, 13: Serieller Daten- und Takteingang (DATA, CLK)

Pin 14: Freigabeeingang/Datenübernahme (LE)

Pin 16: Freigabe für Modulatorausgang (ENOP)

Pin 18, 19, 32, 33: Differenzielle Basisbandeingänge des Modulators (QP, QN, IN, IP)

Pin 26: HF-Ausgangssignal (RFOUT) Pin 36: Lokaloszillatorauswahl (LOSEL) Pin 37, 38: Lokaloszillator (LON, LOP) Pin 39: VCO-Steuereingang (VTUNE) Exposed Pad: Masse

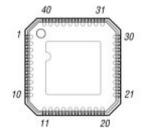
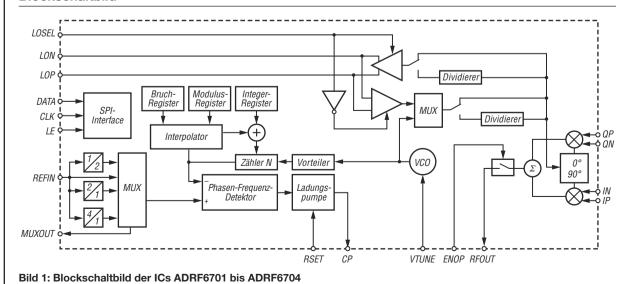


Bild 2: Pinbelegung (LFCSP-40)


Beschreibung

Die Schaltkreise ADRF6701 bis ADRF6704 sind PLL-Frequenzsynthesizer mit integriertem VCO sowie Teilern, die sich IC-abhängig für Ausgangsfrequenzen bis 3 GHz einsetzen lassen. Die I/Q-Eingänge für das Basisband sind differenziell ausgeführt.

Das LO-Signal lässt sich wahlweise durch den internen Oszillator erzeugen, extern zuführen oder durch die PLL aus dem Referenzsignal gewinnen.

Die Steuerung der IC ist über ein serielles Dreileiter-Interface (Daten, Freigabe, Takt) möglich. Eine USB-basierte Windows-Steuersoftware für das Evaluation-Board ist beim Hersteller verfügbar.

Blockschaltbild

Parameter	Kurzzeichen min.		typ.	max.	Einheit
Ausgangsfrequenz					
ADRF6701	$f_{\rm A}$	400		1250	MHz
ADRF6702	f_{A}	1200		2400	MHz
ADRF6703	$f_{\rm A}$	1550		2650	MHz
ADRF6704	$f_{\rm A}$	2050		3000	MHz
Lokaloszillatorfrequenz					
ADRF6701	$f_{\rm LO}$	750		1150	MHz
ADRF6702	$f_{ m LO}$	1550		2150	MHz
ADRF6703	$f_{\rm LO}$	2100		2600	MHz
ADRF6704	$f_{ m LO}$	2500		2900	MHz
Ausgangsleistung					
ADRF6701, $f_{A} = 950 \text{ MHz}$	P_{A}		3,8		dBm
ADRF6702, $f_A = 1960 \text{ MHz}$	P_{A}		4,1		dBm
ADRF6703, $f_A = 2300 \text{ MHz}$	P_{A}		4,48		dBm
ADRF6703, $f_{A} = 2700 \text{ MHz}$	P_{A}		5,5		dBm
Phasenrauschen bei Nutzung de	r PLL und	10 kHz Off	set		
ADRF6701, $f_A = 950 \text{ MHz}$	$P_{ m A}$		-112		dBc/H
ADRF6702, $f_{A} = 1960 \text{ MHz}$	P_{A}		-108,5		dBc/Hz
ADRF6703, $f_A = 2300 \text{ MHz}$	P_{A}		-103,5		dBc/Hz
ADRF6703, $f_A = 2700 \text{ MHz}$	P_{A}		-97,7		dBc/Hz
Pegel der 1. Oberwelle im Ausg	angssignal				
ADRF6701, $f_A = 1100 \text{ MHz}$	a_1		-61		dBc
ADRF6702, $f_A = 2140 \text{ MHz}$	a_1		-47		dBc
ADRF6703, $f_{A} = 2140 \text{ MHz}$	a_1		-41		dBc
ADRF6703, $f_A = 2700 \text{ MHz}$	a_1		-44,4		dBc
Externes LO-Signal					
Eingangspegel	$P_{ m LO}$		0		dBm
Eingangsimpedanz	$R_{ m LO}$		50		Ω
Basisbandeingangsspannung	$U_{ m EB}$	400	500	600	mV
Basisbandbreite	$B_{ m B}$		750		MHz
Betriebsspannung	$U_{ m B}$	4,75	5	5,25	V
Betriebsstrom im TX-Mode mit	eingechalt	etem LO-Pi	uffer		
ADRF6701 ADRF6703	$I_{ m B}$		290		mA
ADRF6704	I_{B}		276		mA

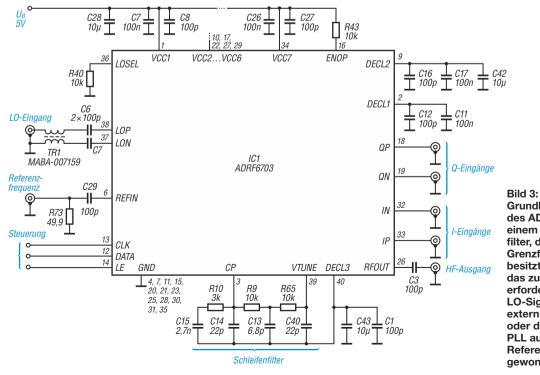
 $R_{\rm th}$

Hersteller

Analog Devices, Norwood, USA, www.analog.com

Bezugsquellen

Digi-Key Electronics, www.digikey.de Mouser Electronics, www.mouser.de


Funktion

Zwischen den Anschlüssen CP (Pin 3) und VTUNE (Pin 39) ist das Schleifenfilter anzuordnen, welches die Grenzfrequenz der PLL-Regelschleife bestimmt. In der nachfolgenden Tabelle sind zwei Dimensionierungen enthalten, wobei die in der linken Spalte angegebenen Werte auch die der in Bild 3 verwendeten sind.

	130 kHz	2,5 kHz
C14	22 pF	100 nF
R10	$3 \text{ k}\Omega$	68 Ω
C15	2,7 nF	$4,7 \mu F$
R9	$10~\mathrm{k}\Omega$	270Ω
C13	6,8 pF	47 nF
R65	$10~\mathrm{k}\Omega$	0Ω
C40	22 pF	offen

Applikationsschaltung

Wärmewiderstand

35

K/W

Bild 3:
Grundbeschaltung
des ADRF6703 mit
einem Schleifenfilter, das 130 kHz
Grenzfrequenz
besitzt;
das zum Mischen
erforderliche
LO-Signal kann
extern zugeführt
oder durch die
PLL aus der
Referenzfrequenz
gewonnen werden.